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Ground Heat Exchangers (GHE): Large diameter Shallow 
Bore Helical design 
» GHE: Ground as a sink/source instead of ambient air.

  

(a) Vertical, (b) Horizontal, (c) Slinky 
& (d) Helical GHEs. Helical GHE installation photographs and parameters, Honda 

Smart Home (HSH), Davis CA

Parameters Values

Helix pitch 0.152 m (6 in.)

Helix diameter 0.559 m (22 in.)

GHE spacing 4.572 m (15 ft)

Depth of GHE top 0.914 m  (3 ft)

Height of the GHE coil 5.182 m (17 ft)

Pipe diameter ID 21.34 mm 
OD 16.94 mm

(Nominal ½ in.)

Tube material HDPE

Backfill Native soil

Heat-carrier fluid Water

Supply pipe Helical pipe



Computational Models: CaRM and CFD

» Two models

• Capacitance and Resistance model (CaRM)

• Computation fluid dynamics model

» CaRM model

• Originally developed by Prof. Zarrella

• Computationally more efficient

» CFD model

• Highly detailed

• Computationally intense

• Provides finer resolution of ground temperatures



Objectives

1. CaRM model improvements 2 slides

2. Impact of moisture 5 slides

3. Parametric study 7 slides

4. Helical GHE response factor 2 slides
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1) CaRM Model improvements

CaRM-He CaRM-He v2

» Improvements using CFD 
simulation results and site 
data



1) CaRM Model improvements (HSH data & CFD)
» RMSD CaRM-He v2 compared to CFD  

• borewall temperature = 0.8˚C (Improved by 35%)

• core temperature = 0.3˚C (Improved by 27%)

» Borewall contour plot: Difference -2.2 to 0˚C
(except for few locations at top and bottom)



2) Impact of moisture – Test site design

 

Helical GHE geometry (test site)

Temperature sensors (RTDs) at depth 2.5 ft, 7.5 ft, 12.5 ft, 17.5 ft, 22.5 ft

Moisture sensors at depth 2.5 ft, 12.5 ft, 22.5 ft

Far-Field
Sensors

Core Sensors

3.048m 
(10 ft)

Intermediate
Sensors

Bore wall Sensors

3.048m 
(10 ft)

3.048m 
(10 ft)

3.048m 
(10 ft)

3/A

1/C
2/D

4/B

Bore

East West

 

Test site layout & probe locations. Photograph of top view of 
GHE 1/C.



• ksoil increases by 4.2%, as moisture increases from 25% to 42%.

• ksand increases by 450% as moisture increases from 4.3% to 35.5%

2) Impact of moisture – Thermal property results soil 
& sand

Soil thermal conductivity variation with changes in moisture in (a) soil (b) sand.

Moisture sensor

(Terros)

Soil

sample

Thermal

conductivity

probe



• The Root Mean Square Difference (RMSD) is 1.3°C.

2) Impact of moisture – Single GHE test results
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• The RMSD between the simulation results and measurements is 1.0°C.

2) Impact of moisture – Multiple GHE test results
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• The results match well, however an offset is present. The overall RMSD is 0.7°C.

2) Impact of moisture – Multiple GHE test results
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3) Parametric study

» Heat pump model incorporated in the validated CaRM model.

» CBECC-Res model used to generate building load profile in two CA Climate Zones

» Parametric analysis was performed by varying the following:

• Spacing

• Number of GHEs

• Diameter 

• Arrangement

• Height

• Backfill type

» Air-source heat pump used as baseline to evaluate GHE electricity savings



3) Parametric study

» Cumulative summer load: Sacramento and Riverside are within 11% of each other. 

» Cumulative winter load: Sacramento is 2.25 times larger than in Riverside.
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3) Parametric study: Sacramento CZ12

Parameters Reference Optimum
Borehole spacing (m) 3.5 2.3
Number of GHEs 8 12
Borehole diameter (in.) 24 16
Pipe diameter (in.) 3/4 1/2
GHE height (ft) 20 20
Cost of 1 GHE $ 384 $ 208
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3) Parametric study: Sacramento CZ12
• Optimum system consumes 28.3% less electricity than air-source 
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GHE height (ft) 20 20
Cost of 1 GHE $ 384 $ 208



3) Parametric study: Sacramento CZ12
Optimum system seasonal COP compared to air-source 

• Heating: 36% better

• Cooling: 70% better
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3) Parametric study: Riverside CZ10
• Optimum system consumes 28.5% less electricity 

than air-source.

• Optimum system seasonal COP compared to air-
source 

 Cooling: 48% better

 Heating: 43% better
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3) Parametric study: Sacramento
Conservative estimates:

 Heat pump performance adjusted for 15% propylene glycol

 Electricity consumed by circulation pump (efficiency = 50%)

 Water-water heat pump result is 20% better than air-water heat pump 
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4) Helical GHE response factor development

» G-functions: dimensionless resistance. Provide the temperature of the borehole wall (Tb) 
for a given heat flux (Q’, W/m) at a given time step:

» EnergyPlus relies on G-functions to model GHEs. 
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4) Helical GHE response factor development

 

» CaRM was used to generate G-functions for all 
boundary conditions for following parameters.

• Borehole diameter

• GHE height

• Pitch (to ensure independence)

• Backfill properties



Conclusion

»CaRM model improved using CFD model and HSH data.

» Impact of soil moisture on GHE performance was measured and 
incorporated in the modeling approach.

»Parametric study of GHE carried out. Results show significant electricity 
saving over baseline air source heat pumps. 

»Response factors from CaRM generated. These allow building simulation 
software to model Helical GHEs.
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Questions?

Email address:

anajib @ucdavis.edu

antash.najib@gmail.com
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