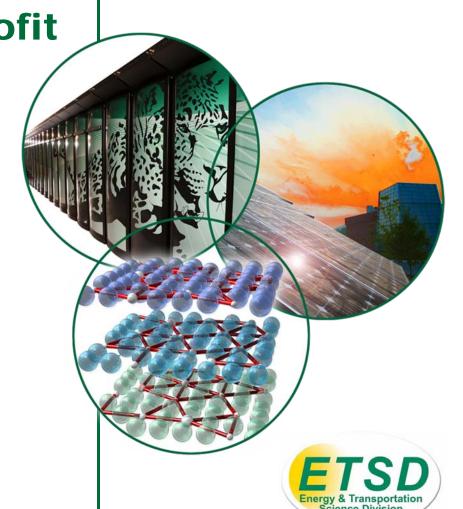


Hidden Treasure

Potential Benefits of Residential GSHP Retrofit

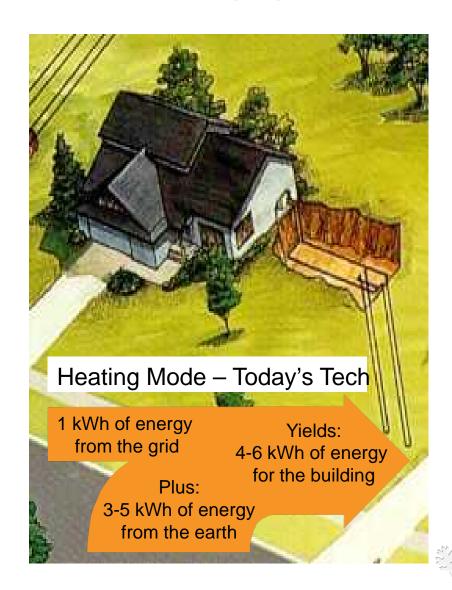

Xiaobing Liu, Ph.D., CGD, LEED AP

ORNL Building Technologies Research & Integration Center

for

CALIFORNIA ENERGY COMMISSION March 21, 2013

Agenda


- Background
- Assessment methodology
- Results
 - National assessment
 - 12 GW goal of CA: a different solution
- Actions to Realize the Potential
- Conclusions

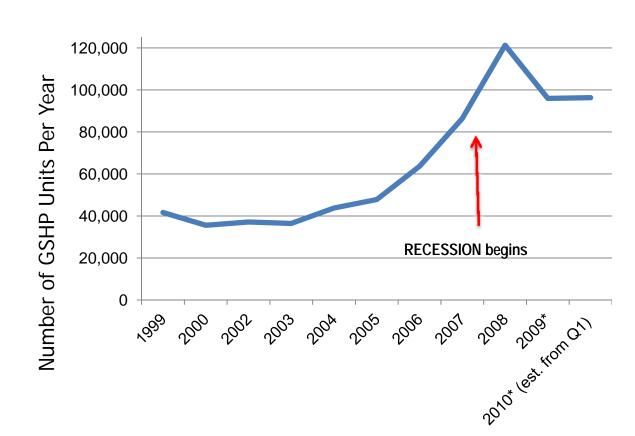
Characteristics of GSHP

- Use renewable low-grade energy in
 - Earth, ground water, river, etc.
- Move heat at high energy efficiency
 - With 4-6 COP today
- Reduce summer peak electrical demand and improve load factor
- Labor intensive installation (create jobs)
- Widely applicable
 - New
 - Retrofit
 - Commercial and residential

Largest Potential Market for GSHP:

Single-family Homes

86.1 million single-family homes (SFH) in U.S. (Census 2008)

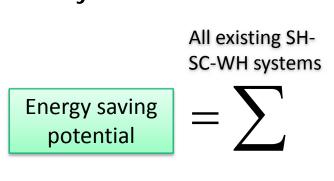

- On average, 73% of the energy consumed in SFH is for space conditioning and WH (DOE 2009)
- Many of existing conventional space conditioning and WH equipments in SFH are approaching the end of their service life and thus need to be replaced
- Many SFHs have adequate space and accessibility for installing ground heat exchanger

Market Status of GSHP in U.S.

- Approximately 1
 million GSHP units
 have been installed
 in the U.S.
- Less than 1% existing SFHs in the US are using GSHP
- Shipments of GSHP units grew rapidly before the recession and around 100,000 GSHP units were shipped in 2009

(Source: Tina Kaarsberg at DOE)

₽ Dot


Rationale for Assessing National Benefits of Residential GSHP Retrofits

- Increase awareness of public, especially the policy makers, about the potential benefits of GSHP retrofit in residential buildings:
 - Savings in primary energy
 - Reduced carbon dioxide (CO₂) emissions
 - Reduced summer electrical peak demand
 - Savings in consumer energy expenditures
- Inform potential investors about the economics of residential GSHP retrofits
- Facilitate the development of roadmap for GSHP industry

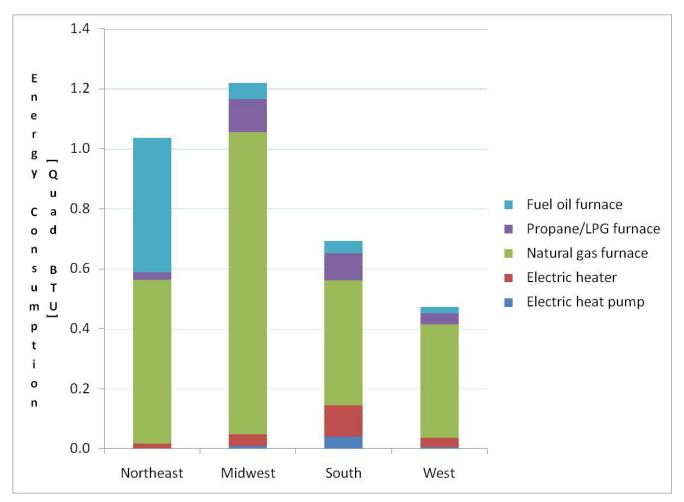
Assessment Methodology

- Based on energy consumption data of existing residential spaceheating, space-cooling, and water-heating (SH–SC–WH) systems obtained from Residential Energy Consumption Survey (EIA 2005)
- Determine relative differences in energy consumption between existing residential SH–SC–WH systems and a state-of-the-art GSHP system
- Account for various climate and geological conditions, energy prices, as well as source energy factors and emissions factors for electricity and fossil fuels

Total energy consumption of a particular existing SH-SC-WH system

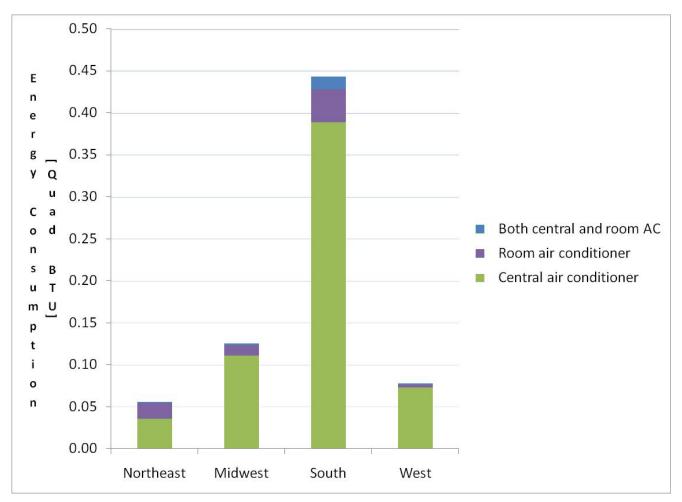
Percentage of energy saved by GSHP system

Types and Efficiencies of Existing SH-SC-WH Systems in U.S. SFHs


Energy services	Energy services Existing systems and						
equipment							
Space heating	ASHP	3.2 COP					
	Electric heater	100 EF					
	Natural gas-fired furnace/boiler	80 AFUE					
	Propane- or LPG-fired furnace/boiler	80 AFUE					
	Heating oil-fired furnace/boiler	80 AFUE					
Space cooling	CAC/ASHP	10 SEER					
	RAC	7.7 SEER					
	Combination of CAC and RAC	7.7–10 SEER					
Water heating	Electric heater	88 EF					
	Natural gas heater	58 EF					
	Propane or LPG heater	58 EF					
	Heating oil heater	58 EF					

(EIA 2000; DOE 2005)

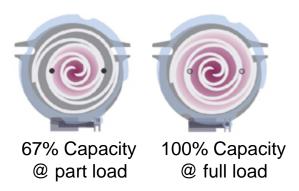
Energy Consumption of Existing Space Heating Systems by Census Region

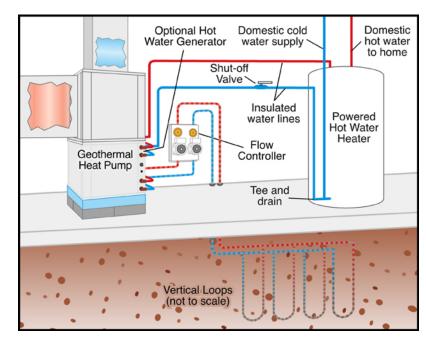


Energy Consumption of Existing Space Cooling Systems by Census Region



Energy Consumption of Existing Water Heating Systems by Census Region

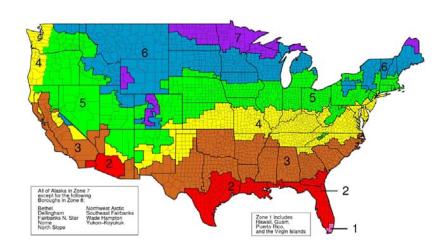




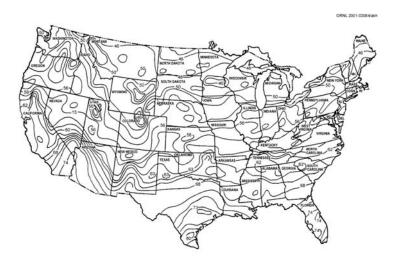
State-of-the-Art GSHP System

- Packaged water-to-air GSHP unit with two-stage scroll compressor and ECM fan
 - Cooling: 18.2 EER (full load) & 27 EER (part load)
 - Heating: 4.0 COP (full load) & 4.5 COP (part load)
- Vertical closed-loop ground heat exchanger (maintaining 30°F-95°F EFT to GSHP unit)
- Storage-type electric water heater assisted with the desuperheater of GSHP unit
- Highly energy-efficient circulation pump

Two-stage scroll compressor



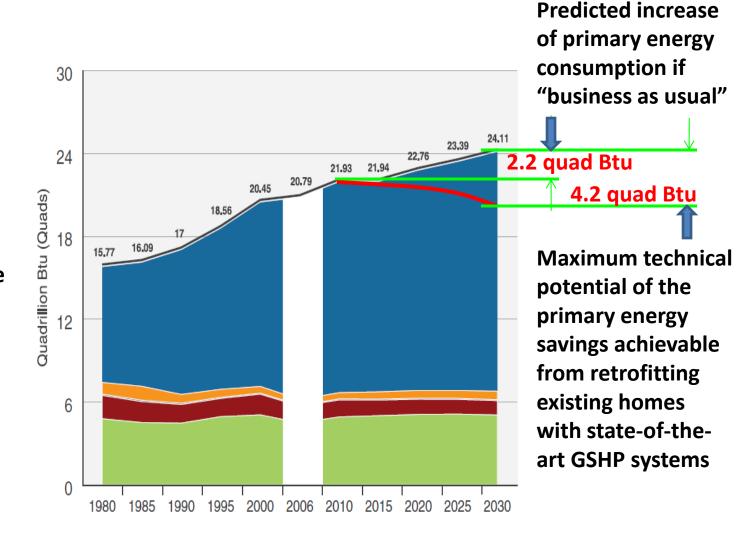
Various Climate and Geology Conditions



U.S. census regions and divisions

- Select 14 cities to represent various major climate zones within each census region
- Use weather data and undisturbed ground temperature of each representative city
- Assume typical ground thermal conductivity for all cities

2004 IECC climate zones of the U.S.



Ground or groundwater temperatures in the U.S.

Potential Energy Savings from Ground Source Heat Pump (GSHP) Systems

U.S. Residential primary energy consumption by year and fuel type (DOE 2009)

Annual National Benefits:

at Various Market Penetration Rates

Estimated national honofits	Market penetration rate of GHP retrofit				
Estimated national benefits	20%	40%	60%	80%	100%
Primary energy savings [quad BTU]	0.8	1.7	2.5	3.3	4.2
Percentage savings	9.0%	18.0%	27.1%	36.1%	45.1%
CO2 emissions reduction [MM ton]	54.3	108.7	163.0	217.3	271.7
Percentage savings	9.1%	18.1%	27.2%	36.2%	45.3%
Summer peak electrical demand reduction [GW]	43.2	86.4	129.5	172.7	215.9
Percentage savings	11.2%	22.4%	33.6%	44.9%	56.1%
Energy expenditures savings [Billion \$]	10.4	20.9	31.3	41.7	52.2
Percentage savings	9.6%	19.3%	28.9%	38.5%	48.1%

12 GW: A Different Solution

How many GSHP-retrofitted homes can avoid the same amount of primary energy consumption as generating 12 GW electricity with solar power?

Assumptions

- A solar energy system output in a day is equivalent to full-load hours: 5 hr/day
- Shading correction factor: 0.8
- Total delivered efficiency: 0.78
- Conversion factor for electricity to source energy: 3.365
- Primary energy savings from GSHP retrofit: 530 Therms per average home per year
- Total number of households in CA: 13 million

Conclusion

• 2.9 million homes (23% market penetration)

Evaluation, Measurement & Verification Report for the Residential **Ground Source Heat Pump Program**

Prepared by Robert Mowris & Associates for Redding Electric

Findings from this study indicate the GSHP units provide advantages for all participants.

- For the utility, the GSHP reduces peak demand in summer by an average of 2.1 kW per unit and shifts summer cooling loads to winter increasing annual electricity use by 1,355 kWh per year (roughly 10 percent).
- For the customer, the GSHP reduces annual energy bills for space conditioning by 48 percent saving $$639 \pm 185 per year.
- For society, the GSHP mitigates global warming by reducing carbon dioxide emissions for space conditioning by 44 percent, saving 59 million British thermal units (MMBtu) per year of source energy per GSHP.

Note: Content added by CaliforniaGeo

Actions to Realize the Potential

Financial/business model

Regulation

Third-party owned geothermal plant **Energy saving** performance contract for residential buildings

Financial incentives Value energy efficiency in appraisals **Quality** assurance through certification

Geology database for design and installation Design tools **Smart operation** Cost effective GHX

Conclusions

 Large scale retrofit of SFHs in U.S. with state-of-theart GSHP system has tremendous potential in reducing primary energy consumption, CO₂ emissions, and summer peak electrical demand Treasures here!

- Reducing initial cost burden to consumers will make GSHP more competitive
- Lots of work needs to be done to fully recognize the value and realize the potential benefits of GSHP

For more information, please contact:

